wiki:maths:normal

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
wiki:maths:normal [2024/11/04 20:40] Roy Proutywiki:maths:normal [2024/11/04 20:45] (current) Roy Prouty
Line 2: Line 2:
 a.k.a. Gaussian Distribution, Bell Curve, whatever. a.k.a. Gaussian Distribution, Bell Curve, whatever.
  
-$$\mathcal{Norm}(\mathbf{X}=x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}\exp{\biggl(-\frac{(x-\mu)^2}{2\sigma^2})\biggr)}$$+$$\mathcal{Norm}(\mathbf{X}=x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}\exp{\biggl(-\frac{(x-\mu)^2}{2\sigma^2}\biggr)}$$ 
 + 
 +=== Sum of Normals === 
 +Normal Distributions have the favorable quality that their parameters add in quadrature: 
 +Given $\mathcal{Norm_A}(\mu_A, \sigma_A)$ & $\mathcal{Norm_B}(\mu_B, \sigma_B)$\\ \\ 
 +Then, $\mathcal{Norm_A}+\mathcal{Norm_B} = \mathcal{Norm}\biggl(\mu_A+ \mu_B, \sqrt{\sigma_A^2 + \sigma_B^2}\biggr)$